Increasing the Resiliency of Navy Fuel Pipelines

Sara Carmona, Andres Coronel, Rafael Gopar
Graduate Student Mentor: Elyce Bayat, UCSB Mechanical Engineering
Navy Mentor: Galen Marks, NAVFAC EXWC, Public Works Department

The Current Design & Our Objective
In many locations the U.S. Navy receives, stores and transports jet fuel to Air Force Bases utilizing underground pipelines. The project location’s infrastructure includes three low pressure pipelines that run from storage tanks to a fixed pump house where the fuel is then transferred to the Air Force Base through two high pressure pipelines. The most vital section is the pump house and if it became non-operational, the transportation of fuel would be disrupted. To maintain constant fuel supply, our team’s objective was to design a backup piping system consisting of portable pumps and preinstalled connections to bypass the pump house.

Design Constraints and Requirements
- Connections of different size pipes (e.g. 14 in. to 6 in. diameter)
- Stationary Pipeline System must be underground
- Avoid use of welding on portable section
- Pressure transition from 150 to 1000 PSI
- Must be able to transport 1600 GPM (Gallons Per Minute)

Comparing Already Existing Piping Systems

<table>
<thead>
<tr>
<th>Time of Construction and Repair</th>
<th>Applicability to other systems</th>
<th>Portability</th>
<th>High Pressure (≥ 1000 PSI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gathering (Non-domestic gas line)</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
</tr>
<tr>
<td>Transportation (oil line across states)</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
</tr>
<tr>
<td>Distribution (domestic gas line)</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
</tr>
</tbody>
</table>

Analysis
In order to keep fuel flowing at the desired flow rate, a certain pressure is required to drive the flow. Therefore, we analyzed the system using fluid mechanics principles to ensure that all sections had the appropriate pressure drop for desired flowrate. This analysis guided design changes, including reorienting the valves to be horizontally mounted, which allowed for a decrease in pressure drop.

Key advantages of Proposed Design
- Allows for connection of different pipe sizes
- Permanent portion underground whereas portable portion is above ground
- Rapid and simple assembly of sections
- System can withstand and achieve the pressure transition of 1000 PSI

References

Acknowledgements
The authors want to thank: UCSB Pipelines for the opportunity; Galen Marks, our Navy Mentor who provided invaluable support, patience and knowledge; Elyce Bayat, our UCSB Mentor who significantly helped with knowledge of fluid mechanics, research, and presentations; Facilities of Public Works Department for assistance and support.